Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Health Technol (Berl) ; 12(6): 1277-1293, 2022.
Article in English | MEDLINE | ID: covidwho-2119763

ABSTRACT

Introduction: Vaccines are the most important instrument for bringing the pandemic to a close and saving lives and helping to reduce the risks of infection. It is important that everyone has equal access to immunizations that are both safe and effective. There is no one who is safe until everyone gets vaccinated. COVID-19 vaccinations are a game-changer in the fight against diseases. In addition to examining attitudes toward these vaccines in Africa, Asia, Oceania, Europe, North America, and South America, the purpose of this paper is to predict the acceptability of COVID-19 vaccines and study their predictors. Materials and methods: Kaggle datasets are used to estimate the prediction outcomes of the daily COVID-19 vaccination to prevent a pandemic. The Kaggle data sets are classified into training and testing datasets. The training dataset is comprised of COVID-19 daily data from the 13th of December 2020 to the 13th of June 2021, while the testing dataset is comprised of COVID-19 daily data from the 14th of June 2021 to the 14th of October 2021. For the prediction of daily COVID-19 vaccination, four well-known machine learning algorithms were described and used in this study: CUBIST, Gaussian Process (GAUSS), Elastic Net (ENET), Spikes, and Slab (SPIKES). Results: Among the models considered in this paper, CUBIST has the best prediction accuracy in terms of Mean Absolute Scaled Error (MASE) of 9.7368 for Asia, 2.8901 for America, 13.2169 for Oceania, and 3.9510 for South America respectively. Conclusion: This research shows that machine learning can be of great benefit for optimizing daily immunization of citizens across the globe. And if used properly, it can help decision makers and health administrators to comprehend immunization rates and create strategies to enhance them.

2.
Information ; 12(12):528, 2021.
Article in English | MDPI | ID: covidwho-1580685

ABSTRACT

The application of machine learning techniques to the epidemiology of COVID-19 is a necessary measure that can be exploited to curtail the further spread of this endemic. Conventional techniques used to determine the epidemiology of COVID-19 are slow and costly, and data are scarce. We investigate the effects of noise filters on the performance of machine learning algorithms on the COVID-19 epidemiology dataset. Noise filter algorithms are used to remove noise from the datasets utilized in this study. We applied nine machine learning techniques to classify the epidemiology of COVID-19, which are bagging, boosting, support vector machine, bidirectional long short-term memory, decision tree, naïve Bayes, k-nearest neighbor, random forest, and multinomial logistic regression. Data from patients who contracted coronavirus disease were collected from the Kaggle database between 23 January 2020 and 24 June 2020. Noisy and filtered data were used in our experiments. As a result of denoising, machine learning models have produced high results for the prediction of COVID-19 cases in South Korea. For isolated cases after performing noise filtering operations, machine learning techniques achieved an accuracy between 98–100%. The results indicate that filtering noise from the dataset can improve the accuracy of COVID-19 case prediction algorithms.

SELECTION OF CITATIONS
SEARCH DETAIL